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Bioceramics - simulated body fluid interfaces: 
pH and its influence of hydroxyapatite 
formation 
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In the present work a method to determine the pH at bioceramics-simulated body fluid 
interfaces has been developed. The results obtained with several bioactive silica-based 
bioceramic materials are used to propose a general mechanism for hydroxyapatite 
formation. 

1. Introduction 
Apart from hydroxyapatite (HA) implants, one of the 
conditions for ceramic materials (CM) to be bioactive 
is to form a HA layer on their surfaces while exposed 
to simulated body fluid (SBF). 

The mechanism of HA formation on bioactive sil- 
ica-based CM has been studied by different authors 
[l-3]. All of them claim that a silica hydrogel layer is 
formed on the surface of the CM prior to the forma- 
tion of the HA layer. This hydrated silica is respon- 
sible for the HA nucleation. However, none of the 
authors have paid attention to the influence of pH at 
the CM-SBF interfaces on HA formation, although it 
is well known that HA is formed at pH values greater 
than 8 [4, 51. 

In the present work a method to determine the pH 
at bioceramics-SBF interfaces has been developed. 
The results obtained with several bioactive silica- 
based CM are used to propose a general mechanism 
for HA formation. 

2. Materials and methods 
The following bioactive materials have been used: 
bioglass @ [6]; CaO. SiOz glass (CS-glass) [7]; magne- 
sium containing glass (A3) [S] and polycrystalline 
pseudowollastonite (psCS) [9]. In addition, a non- 
bioactive CaO . SiOz glass containing 13 wt % zirco- 
nia (W-Z) has also been used [lo]. 

The pH value at the CM-SBF interface was meas- 
ured using two identical ion-sensitive field effect tran- 
sistors (ISFET) [ 11) while the materials were immer- 
sed in the SBF [ 123. The measurements were made at 
constant drain to source current and voltage (I,, and 

I’,,). The pair of ISFETs were arranged in a differen- 
tial measurement set-up (Fig. la). The ISFET sensi- 
tive membrane consists of a 100nm thick layer of 
Si3N4 over a 78 nm thick layer of Si02. The sensitive 
area of each chemical sensor is 400 x 20 pm2 and the 
size of the whole chip is 2.4 x 1.35mm2 (Fig. lb). 

3. Results and discussion 
Fig. 2 shows the variation of pH versus time for all the 
materials studied. As can be seen all the bioactive 
materials show a rapid increase in pH at the CM-SBF 
interfaces which tend to reach pH values greater than 
9, and in some cases even 10, after 15 min. Ho,wever, in 
the non-bioactive (W-Z) material the pH after 0.5 min 
remains essentially constant (pH = 7.62). 

Fig. 3 shows the variation of pH versus distance 
from the CM-SBF interface. This indicates that the 
large increase in pH takes place just at the CM-SBF 
interface and as soon as we move away from this 
interface the pH decreases suddenly to the original 
value of the SBF (7.25). 

In all the bioactive materials studied a Ca-P layer 
similar to that shown in Fig. 4a is formed on their 
surface above an amorphous silica interlayer (Fig. 4b). 
In all cases the Ca-P layer has been identified as HA, 
which is similar to that found in natural bone apatites 
(Fig. 5) 

Fig. 6 shows the range of stability of the different 
phosphate species versus pH. In the pH interval be- 
tween 7.21 and 12.3 the predominant species is 
HPOi- . Fig. 7 shows a unified solubility diagram for 
various Ca phosphates in terms of the predominant 
ionic species HPOi- above pH = 7.21. The calcium 
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Figure 3 Variation of pH with disrance from the material-SBF 
interface. 

Figure I (a) A: ISFET in contact with the sample: B: the pair of 
ISFETs mounted in a differential measurement set-up, (1) ISFET in 
contact with the sample. (2) R-reference electrode, (3) pH-glass 
electrode and (4) ISFET in opposition to the other ISFET; C: 
ISFET in contact with the grounded sample. (b) A view of the 
ISFET sensitive membrane. 
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Figure 2 Variation of pH with time for all the material studied. 
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Figure $ (a) SEM micrograph of the surface of the material psCS 
after 3 weeks exposure to SBF. (b) SEM microstructure of a cross- 
section of the material psCS after 3 weeks exposure to SBF: HA 
hydroxyapatite: S amorphous silica. psCS pseudowollastonite. 

phosphates decrease in solubility in the order 
CaHP04.2H20 (brucite) > CaHPO, (monetite) > 
Ca8H2(P01)5Hd0 {orthocalcium phosphate) > p- 
Ca,(P04)2 (p-tricalcium phosphate) > Ca,OH 
(PO,), (hydroxyapatite). As can be seen in Fig. 7, at 
SBF HPOi- concentration equal to 10m3M and 
pH between 9.5 and 10.5 the solution is super- 
saturated with respect to HA and precipitation takes 
place. These conditions are reached at the CM-SBF 
interface. 

From Fig. 6 we can see that in the pH range 
between 9 and 10.5 the predominant species at the 



F&E 5 (a) High resolution image of HA crystals shows well resolved 
(10 0) lattice plane imaze of 0.83 nm spacing. (b) SAD spots showing 

clear (0 0 2) arc indicating the preferential orientation of the HA. 

interface CM-SBF, together with HPOi-, can be 
HCO; or CO:-. Consequently both of them can 
precipitate together with the HA. The presence of 
CO: - in the HA layer has been reported by several 
authors [13: 141 and confirmed for the present authors 
by XPS study of the HA layer [15]. 

Taking into account these results and those pre- 
viously reported [9] the mechanism of HA formation 
in bioactive silica-based ceramic materials can be de- 
scribed as follows: At pH 7,25 of the SBF the reaction 
mechanism starts (in all the materials studied) through 
an ionic exchange of H30+ from the SBF by labile 
cations of materials such as Na+ , K f : Ca+ T, etc. This 
induces the formation of an amorphous hydrogel sil- 
ica layer and a sudden increase in pH from 9 to 10.5 at 
the CM-SBF interface. This condition determines the 
partial solution of amorphous silica as SiOz- and the 
subsequent precipitation of HA. 

4. Conclusions 
When a bioactive silica-based material is immersed in 
SBF the pH at the CM-SBF interface suddenly in- 
creases, reaching values in the range 9 to 10.5. This 
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Figu~ 6 Range of stability of the different phosphate and carbon- 
ate species versus pH. 
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Figure 7 Unified solubiiily diagram for various Ca phosphate 

minerals [ 161. 

increase in pH at the interface is mainly due to ionic 
exchange of H30+ from the SBF for labile cations of 
materials such as Na- , K+ : Ca + -, etc. This exchange 
leaves a silica hydrogel layer formed on the CM surfa- 
ces prior to the formation of the HA layer. At this high 
pH value part of the silica hydrogel is dissolve:d in the 
SBF and subsequent precipitation of a HA layer takes 
place on the surface of the materials. 

The mechanism found is common for both amorph- 
ous and crystalline silica-based bioactive materials 
studied up until now. 
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